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Abstract The pathophysiological mechanisms underpin-
ning the development of, and recovery from, sepsis-induced
organ failure require further delineation. Mitochondrial dys-
function may well play a key role. This review will therefore
consider mitochondria’s function in normal physiology, evi-
dence linking bioenergetic alterations to organ dysfunction
after severe and prolonged inflammation, and potential ther-
apeutic strategies that may be applied.
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Résumé Au cours du sepsis, les mécanismes physiopatholo-
giques sous-tendant le développement et la récupération des
dysfonctions d’organe sont encore mal compris. La dysfonc-
tion mitochondriale pourrait jouer un rôle majeur. Cette mise
au point décrit la physiologie normale des mitochondries, les
arguments reliant l’altération bioénergétique mitochondriale
aux dysfonctions d’organes après des périodes d’inflamma-
tion sévère et prolongée. Enfin, les perspectives thérapeu-
tiques envisageables seront abordées.

Mots clés Mitochondrie · Sepsis · Défaillance
multiviscérale · Physiopathologie · Traitement

Introduction

The systemic inflammatory response to infection and severe
sepsis may progress to multi-organ failure and carries with it

a high morbidity and mortality [1,2]. Precise pathophysio-
logical mechanisms remain elusive. The contribution of an
impaired circulation leading to tissue hypoperfusion is well
established, but an important role of bioenergetic dysfunc-
tion is also emerging. An association is found between the
degree of mitochondrial dysfunction and outcomes in
patients with sepsis-induced multi-organ failure [3]. While
this does not confirm cause-and-effect, it does nevertheless
suggest a new route for therapeutic intervention focused on
either protection or acceleration of the recovery process.
This is particularly pertinent in light of the multiple trial fail-
ures related to immunomodulatory therapies. This overview
will provide an insight into mitochondrial biology, its rele-
vance to sepsis, and possible therapeutic opportunities that
emerge.

Mitochondria in health

The physiological roles of mitochondria

Virtually all cell types possess mitochondria, the notable
exception being erythrocytes. Most cell types rely upon
mitochondria to provide the bulk of the energy requirement
[in the currency of adenosine triphosphate (ATP)] needed to
enable normal cellular functioning, and to be able to respond
to any intrinsic or extrinsic physiological or pathophysiolog-
ical stress. Mitochondria utilize approximately 98% of total
body oxygen consumption and generate 90% of human
power by proton transfer through ATP [4,5]. Proton transfer
occurs through a series of enzymatic steps that occur within
the electron transfer chain located in the inner mitochondrial
membrane, leading to oxidative phosphorylation of adeno-
sine diphosphate (ADP).

Mitochondria also have roles in cell signaling and trigger-
ing of cell death pathways. The co-ordinated release of cyto-
chrome c from mitochondria activates intrinsic pathways of
programmed cell death, apoptosis, whereas necrosis can be
triggered when the ATP level falls below a certain threshold.
Reactive oxygen species (ROS), produced as a ‘by-product’
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of oxidative phosphorylation, plays an important role in
maintaining vascular tone, oxygen sensing and, possibly,
glucose regulation during skeletal muscle contraction [6].
Indeed, mitochondria are the predominant source of ROS
production within the body. The three endogenous gases—
nitric oxide (NO), carbon monoxide, and hydrogen sulphide
—are also important regulators of mitochondrial signaling in
health. Their higher concentrations in disease states such as
sepsis have progressively greater inhibitory effects on mito-
chondrial respiration and ROS generation.

Other functions of the mitochondrion include the site of
production (e.g. cortisol) or action (e.g. triiodothyronine) of
many hormones, the biosynthesis of heme and iron-sulphur
clusters, and heat generation.

Energy generation by mitochondria

In the cytosol, glucose is metabolized to pyruvate by gly-
colysis. Pyruvate is transported into the mitochondria,
through an antiporter with hydroxide ions, for conversion
by pyruvate dehydrogenase to acetyl coenzyme A (acetyl
CoA). Fatty acids are esterified to fatty acyl coA in the
cytosol. Medium chain fatty acids (C8 to 10) can diffuse
through the mitochondrial membrane, whereas long chain
fatty acids rely on the carnitine pathway. Carnitine palmi-
toyltransferase (CPT)-1 in the mitochondrial membrane
exchanges carnitine for CoA attached to the fatty acid and
a conjugate form. This conjugate is transported into the
matrix where CPT-2 breaks the conjugate, allowing the
fatty acid CoA to reform and undergo beta-oxidation
within the mitochondrial matrix.

Acetyl-CoA feeds into the tricarboxylic acid (TCA) or
Krebs’ cycle, generating nicotinamide and flavin adenine
dinucleotide (NADH and FADH2). As summarized in the
Figure 1, NADH passes electrons to complex I (NADH
dehydrogenase) of the electron transport chain, becoming
oxidized to NAD+, while FADH2 donates electrons to com-
plex II (succinate dehydrogenase). Electrons are then passed
onto ubiquinone (coenzyme Q), before moving on to com-
plex III (cytochrome bc1 complex), cytochrome c, and then
complex IV (cytochrome a, a3, cytochrome c oxidase). Oxy-
gen is the terminal electron acceptor of the chain at this
enzyme complex, being reduced to water. If oxygen is pre-
maturely or incompletely reduced, an increase in superoxide
radical (ROS) production occurs, particularly at complexes
III and I. The mitochondrion deals with ROS production
through its large array of antioxidants, such as superoxide
dismutase, catalase, glutathione peroxidase, and peroxire-
doxins. This can, however, be overwhelmed in pathological
processes generating large amounts of ROS.

As the electrons transfer down the chain, protons move
across the inner mitochondrial membrane generating an elec-
trochemical gradient. This ‘chemiosmotic gradient’ provides
the energy to drive ATP synthase (complex V) to produce
ATP from ADP. ATP is transported out of the mitochondria
and ADP moves back in via the adenine nucleotide translo-
case (ANT).

The process is not 100% ‘efficient’ in terms of ATP
production. Some of the proton gradient is dissipated before
oxidative phosphorylation is complete. This ‘uncoupling’ is
due to a variety of mechanisms, including specialized uncou-
pling proteins within the inner mitochondrial membrane.

Fig. 1 The mitochondrial electron transport chain. A number of redox reactions enable the generation of a proton (H+) gradient to gener-

ate ATP. Electron (e-) transfer is shown along with main sites of reactive oxygen species (ROS) production. NADH: nicotinamide ade-

nine dinucleotide; FADH1: flavin adenine dinucleotide; Q: ubiquinone, or coenzyme Q; Cyt c: cytochrome c; ADP: adenosine diphos-

phate; PI: Phosphate; ATP: adenosine triphosphate
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Uncoupling has particular importance in heat generation and
hibernation.

The mitochondrial life cycle

Mitochondrial biogenesis is the production of new mito-
chondria/mitochondrial protein occurring with, and indepen-
dent of, cell mitosis. In the non-dividing cell, biogenesis
improves the capacity for energy production if energy
demands increase. The process involves production of mito-
chondrial proteins encoded either by the cell nucleus with
subsequent import and integration into the mitochondria,
or via mitochondrial deoxyribonucleic acid (DNA) which
encodes 13 proteins that are mainly situated within the
oxidative phosphorylation pathway.

A key player that orchestrates mitochondrial biogenesis is
the peroxisome proliferator-activated receptor gamma coac-
tivator (PGC)-1alpha, a co-activator of nuclear transcription
factors such as nuclear respiratory factors 1 and 2 (NRF-1
and -2) that upregulate nuclear production of mitochondrial
proteins [7–9]. NRF-1 also increases expression of Tfam
(transcription factor A for the mitochondrion), which, once
transported into the mitochondrion, stimulates transcription
of mitochondrial DNA [10].

Numerous influences on PGC-1alpha occur in response
to physiological (e.g. exercise) and pathophysiological
(e.g. hypoxia) stimuli. AMP (adenosine monophosphate)/
ATP ratios are known inducers in brown adipose tissue and
liver via beta-adrenergic/cyclic AMP pathways [8]. In skel-
etal muscle, the calcineurin A, CaMK (Ca2+/calmodulin-
dependent kinase), p38 MAPK (mitogen-activated protein
kinase), and AMPK (AMP-activated protein kinase) path-
ways have been implicated [11–14], as well as sirtuins
(enzyme deacylators) [15]. Negative regulators influence
energy balance via endogenous RIP140 (nuclear receptor-
interacting protein 1), the p160 myb-binding protein, and
the GCN5 acetyltransferase complex [16–18]. Interaction
also occurs with thyroid, glucocorticoid, estrogen, and
estrogen-related receptors [19].

An association is also emerging between NO and mito-
chondrial biogenesis. Endogenous NO upregulates PGC-
1alpha mRNA expression [20]. NO donors can increase
mitochondrial DNA in cell cultures, while mice deplete of
endothelial nitric oxidase synthase show reduced mitochon-
drial biogenesis, mitochondrial mass, basal oxygen con-
sumption, and ATP levels [21].

During their lifetime, mitochondria undergo numerous
morphological changes during fusion and fission events.
These mitochondrial dynamics are primarily affected by
GTPases; this links with roles in cell division and prolifera-
tion as well as self-directed removal of damaged or surplus
mitochondria, a process known as mitophagy. Mitofusin-2
and OPA-1 (optic atrophy-1), proteins driving fusion

events, and DRP-1 (dynamin-related protein-1), a protein
that influences fission, have been associated with altered
mitochondrial membrane potential and reduced oxygen
consumption [22].

Mitochondrial variation in tissue types

Mitochondria have an intricate, sophisticated, and complex
purpose within the cell and in overall tissue physiology. In
skeletal muscle, mitochondria exist as reticular networks
located near the sarcolemma and also within muscle fibres
[23]. Heart and skeletal muscles have more mitochondrial
content, including respiratory chain subunits, than in liver,
kidney, and brain tissue. Heart muscle mitochondria also
have more cristae (folds) per surface area [24].

Morphological variation is seen in human hepatocytes,
neuronal cells, and umbilical vein endothelial cells in terms
of shape, number of cristae, and distribution within the cell
[25]. Even within the same cell type, variable membrane
potentials are seen, being higher in peripherally located
mitochondria and possibly related to calcium sequestration.
It is likely that mitochondrial antioxidant capacity also varies
between cell types, making some more vulnerable to oxida-
tive stress.

Mitochondrial dysfunction in sepsis and multi-
organ failure

The systemic inflammatory response syndrome is triggered
by microbial antigens (sepsis) or other factors (e.g. trauma,
hemorrhage, burn injury). Micro-organisms or their consti-
tuents are recognized by specialized pattern recognition
receptors (PRRs) situated either on or inside immune, endo-
thelial, and epithelial cells. The best characterized set of
PRRs is the toll-like receptors (TLRs). PRRs recognize both
pathogen-associated molecular patterns (PAMPs) on invad-
ing organisms, as well as host-derived danger-associated
molecular patterns (DAMPs) released in response to stress,
tissue injury, or cell death. Mitochondria released into the
circulation due to tissue damage act as a DAMP.

The subsequent release of pro-inflammatory cytokines
and other mediators leads to activation or suppression of
multiple pathways involving cardiovascular, immunologi-
cal, hormonal, coagulation, metabolic, and bioenergetic sys-
tems. This leads to organ dysfunction that is manifest clini-
cally as impaired physiological or biochemical activity of
that organ. Severe dysfunction leads to a state of failure
that may require significant levels of pharmacological or
mechanical organ support to maintain an acceptable level
of homeostasis compatible with continued survival.

Impaired perfusion early in the septic process (due to
intrinsic and extrinsic fluid losses and decreased intake)
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can lead to tissue hypoxia and amplification of the systemic
inflammatory response. While early and aggressive correc-
tion of the tissue oxygen debt may prove clinically beneficial
[26], attempts to correct cellular hypoxia when organ dys-
function was established proved fruitless, or even harmful
[27,28]. This suggests an important temporal component to
the pathophysiology of sepsis. Indeed, it appears that the
condition shifts from hypoxia to dysoxia. In other words,
there is availability yet an inability of cells and tissues to
use oxygen. This was termed cytopathic hypoxia but, more
accurately, should be labeled cytopathic dysoxia [29]. The
data in support of this are the findings of (i) progressive
reductions in oxygen consumption with increasing sepsis
severity [30]; yet (ii) maintained, or even elevated levels of
oxygen at the tissue level found in both humans and animal
models [31,32]; and (iii) a remarkable lack (or minimal pres-
ence) of cell death, apoptotic or necrotic, in the failed organs
that supports the notion that oxygen lack and tissue hypoper-
fusion is a continuing and pathophysiologically significant
problem. The parallel findings of oxygen availability yet
decreased utilization infer a new metabolic steady state has
been achieved. As mitochondria are the predominant utili-
zers of oxygen, their likely importance in septic multi-organ
failure should be considered. Although there may be an as
yet unrecognized mechanism invoked by prolonged and
severe inflammation that directly inhibits metabolism, there
are well-defined mechanisms by which ATP production is
impaired, leading to a secondary shutdown of metabolism,
and thus cell functioning, akin to hibernation or estivation.
Inflammatory processes that directly target mitochondria
work via inhibition of their activity, through direct damage
from reactive species, and by a decrease in biogenesis
through decreased transcripts of genes encoding for respira-
tory complex proteins.

Respiratory chain activity

Animal models of sepsis have been predominantly used to
study mitochondrial function. Short-term models lasting
several hours demonstrate highly variable results of sepsis
on oxidative phosphorylation. As previously reviewed,
increased, unchanged, or reduced respiratory activity have
all been reported [33]. This may reflect differences in spe-
cies, in tissues studied, in the forms and severity of the septic
insult administered, and in the ex vivo techniques used to
prepare samples and measure activity. The majority of
long-term sepsis models (lasting >16 hours) do however
demonstrate changes in respiratory chain activity, morphol-
ogy, or mitochondrial mass. This has been found in various
tissues taken from different animal species, e.g. heart, mus-
cle and liver, and brain [34–37]. Patient samples, including
muscle, diaphragm, liver, and monocytes, have all shown
decreased mitochondrial enzyme activity, membrane poten-

tial, and histological changes [3,38–42]. Mitochondrial
respiratory complex I is most often found to be inhibited.
We performed vastus lateralis skeletal muscle biopsies in
patients soon after admission to intensive care with septic
shock [3]. Associations were found between complex I dys-
function, ATP depletion, glutathione depletion, excess NO
production, and mortality. A Swedish study reported reduced
mitochondrial enzyme activity in biopsies taken from leg
and intercostal muscles of critically ill patients, whereas
mitochondrial activity was increased in leg skeletal mus-
cle of biopsy taken two hours after an injection of endotoxin
[43]. This emphasizes the varying pathophysiological
changes that occur over the course of sepsis.

Impact of altered redox state

Sepsis produces a large amount of ROS and reactive nitro-
gen species (RNS). This is partly due to activation of
immune and endothelial cells, but also due to increased pro-
duction of mitochondrial superoxide. NO, itself a reversible
inhibitor of mitochondrial respiratory complex IV, can react
with superoxide to form peroxynitrite which has a more
prolonged and potentially irreversible inhibitory effect on
respiratory complexes via nitration, particularly affecting
complex I [44,45]. Direct damage to mitochondrial DNA
may also produce ROS [46].

Altered substrate provision

Early work did not demonstrate any alterations in Krebs’
cycle intermediaries in cardiac tissue of an animal model
[47]. However, Vary reported inhibition of pyruvate dehy-
drogenase, preventing pyruvate entry into the mitochondrion
and thereby leading to an increase in lactate levels [48].
More recently, Mason and Stofan showed reduced activity
of the Krebs’ cycle enzyme, aconitase, in association with
reduced mitochondrial respiration [49].

Altered mitochondrial biogenesis

Calvano et al administered endotoxin to healthy volunteers
and performed transcriptomics on white cells sampled there-
after [50]. Notably, they described decreased expression of
genes encoding for mitochondrial respiratory proteins. We
reported a similar finding in the transcriptome of muscle
biopsies taken from critically ill patients, with a significantly
lower gene transcript in those patients who subsequently
died [40]. This also correlated with a decrease in complex I
activity. Furthermore, PGC-1alpha transcript levels were
raised above normal in those patients who survived, whereas
levels in non-survivors were similar to those in healthy
control samples. Another study in patients with established
septic multi-organ failure in the ICU showed upregulation
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of NRF2alpha (nuclear factor (erythroid-derived 2)-like
2alpha)/GABP (GA-binding protein) genes, suggestive of
biogenesis. Here, protein synthesis was preserved within
the mitochondria, as were genes related to energy metabo-
lism. Interestingly, when considering genes associated with
muscle turnover, presence of those linked with catabolism,
atrogens, was noted [51]. In a long-term mouse model of
S. aureus peritonitis, organ dysfunction and clinical illness
was accompanied by a fall in metabolic rate and a decrease
in mitochondrial mass. Recovery of metabolic activity and
organ function, and clinical improvement were preceded by
an upregulation of markers of mitochondrial biogenesis such
as PGC-1alpha, Tfam (transcription factor A, mitochondrial)
and NRF-1, and suppression of RIP140, an endogenous
co-repressor [52]. In a recent study of endotoxic mice,
locomotor muscles were found to be more susceptible to
mitochondrial injury compared to ventilatory muscles, with
decreased biogenesis and an increase in autophagy [53].

Putative mitochondrially-targeted therapies in
sepsis-induced multi-organ failure

A variety of strategies are available, for example, to protect
mitochondria from injury, or to increase biogenesis with the
aim of accelerating recovery.

Antioxidants

Preclinical trials using antioxidants show promise. In a
murine model using N-acetylcysteine and deferrioxamine
after cecal ligation and puncture (CLP) induction, a signifi-
cant improvement was seen in oxidant profile and mortality
[54]. Antioxidants targeted specifically to mitochondria such
as MitoQ and MitoVitE show improved mitochondrial activ-
ity and a reduction in organ failure severity [55–57]. Mela-
tonin has antioxidant effects and has also improved redox
outcomes and mortality in animal models [58]. Notably, its
circadian variation in plasma is altered in critical illness [59].
Its use in neonates with sepsis has also shown benefit with
reduced oxidative stress; however, larger trials in adults are
lacking [60]. Exploitation of antioxidant therapies has been
considered in detail elsewhere [61].

Inducing ‘suspended animation’

Decreasing metabolic rate is an established therapeutic prac-
tice achieved by inducing therapeutic hypothermia in cardiac
arrest survivors and in infants with anoxic encephalopathy.
Carbon monoxide and hydrogen sulphide are potential gaso-
transmitters that may have similar effects to induce the hiber-
nation state alluded to earlier. While high levels of carbon
monoxide can dangerously inhibit complex IV, at lower

concentrations it enabled tissue protection in animal models
of sepsis [62]. A water-soluble carbon monoxide releas-
ing agent given after induction of sepsis in a mouse model
improved survival rates; this was accompanied by an
increase in mitochondrial respiration, in PGC-1alpha expres-
sion, and in mitochondrial DNA copy number [63]. Carbon
monoxide is released endogenously after activation on heme
oxygenase (HO)-1. Induction of HO-1 in sepsis models has
shown an action through NRF-2, linking it to mitochondrial
biogenesis [64,65].

Hydrogen sulphide, also an inhibitor of complex IV,
reduced oxygen consumption in mice and induced a revers-
ible state of ‘suspended animation’ [66]. Pre-treatment has
shown a survival benefit in lethal hypoxemia and hemor-
rhage [67]. There is potential utility in sepsis with improved
neutrophil migration and decreased mortality reported
through its use in septic mice [67,68].

Stimulating mitochondrial biogenesis

The role of biogenesis and its association with survival ben-
efits in critically ill patients opens new avenues for research
into using it as a treatment modality. Its association with the
HO-1/carbon monoxide pathway has been mentioned ear-
lier. Recently, Thomas et al used a recombinant human
Tfam and found improved redox and mitochondrial activity
profiles in both cultured mouse fibroblasts and a murine
model of sepsis, in which survival was also enhanced [69].
Their murine model of Parkinson’s disease also showed
recombinant human mitochondrial transcription factor A
protein (rhTFAM) improved motor function. This may
have implications in severe sepsis as muscle wasting occurs
early and with significant subsequent impact on return to
normal function [70–72].

Conclusion

In summary, there is significant evidence that implicates mito-
chondrial dysfunction in septic organ dysfunction. Whether
this is causative or epiphenomenal is less clear. However, sur-
vivors have better preservation of ATP and biogenesis mar-
kers. Multi-organ failure may represent a mechanism through
which the likelihood of eventual survival is enhanced in those
hardy enough to survive. Cells may enter a ‘hibernating’ state
in the face of overwhelming inflammation. This adaptive
strategy may have evolved in response to effects on cellular
bioenergetics.
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